AnalySwift, LLC, a provider of efficient high-fidelity modeling software for composites and other advanced materials, announced today Seoul National University is leveraging its powerful VABS software to accelerate and optimize design of composite helicopter rotor blades and high aspect ratio wings. Seoul National University has used VABS for a variety of structural optimization projects in its Active Aeroelasticity and Rotorcraft Laboratory (AARL), which is part of the Department of Aerospace Engineering.

“We have worked with the Active Aeroelasticity and Rotorcraft Laboratory at Seoul National University for several years and we are pleased they selected VABS to be part of their toolset for simulation of composite rotor blades and other slender structures,” said Allan Wood, president and CEO of AnalySwift. “The AARL is involved in a variety of exciting research areas for which VABS can accelerate design by delivering accurate and efficient results.”

The AARL investigates aeroelastic phenomena occurring in aircrafts and spacecrafts, under the direction of Professor SangJoon Shin. Specifically, aeroelasticity examines interactions among the inertial, aerodynamic, and elastic forces on the aerospace vehicles, which generate large deflections of the structures that may lead to destructive failures. Thus, precise prediction of the aeroelastic behaviors is required to prevent failure of the aerospace vehicles. Moreover, aeroservoelasticity seeks more comprehensive solution where active devices or control surfaces alter coupled structural behaviors, and aerothermoelasticity investigates aeroelastic problems involving thermodyamic effects.

“The VABS program is a uniquely powerful tool for modeling composite blades and other slender structures, commonly called beams,” said Dr. Wenbin Yu, CTO of AnalySwift. “VABS reduces analysis time from hours to seconds by quickly and easily achieving the accuracy of detailed 3D FEA with the efficiency of simple engineering models. With VABS, engineers can calculate the most accurate, complete set of sectional properties such as torsional stiffness, shear stiffness, shear center for composite beams made with arbitrary cross-section and arbitrary material. It can also predict accurate detailed stress distribution for composite beams, which are usually not possible with 3D FEA for realistic composite structures.” Read more….